Calculs et Mathématiques

Année 2011/2012

TD n°7: Équations différentielles.

1 Équations d'ordre 1.

- 1. Résoudre chacune des équations différentielles suivantes :
 - (a) y' + y/t = 0.
 - (b) $y' + (\sin t)y = 0$.
 - (c) $y' + y = \frac{1}{1+e^t}$.
- 2. Résoudre les problèmes de Cauchy suivants :

$$y' + y = \frac{1}{1+e^t} + t;$$
 $y(0) = 1.$
 $y' + \frac{\cos^2 t}{\cot t} e^t y = 0;$ $y(1) = 0.$

- 3. Résoudre chacune des équations différentielles suivantes :
 - (a) y' 3y = 2.
 - (b) $y' + 2y = e^{2t}$.
 - (c) $y' 5y = e^{5t}$.
 - (d) $y' + 3t^2y = t^2$.
 - (e) $y' y = \sin t$.
 - (f) $(1+t^2)y'-ty=1+t+t^2$.
- 4. On considère l'équation différentielle
 - $(E) (1-t^2)y' 2ty = 1 .$
 - (a) Résoudre sur]-1,+1[l'équation différentielle (E).
 - (b) Déterminer la solution qui pour t=0 prend la valeur 1.
 - (c) Résoudre (E) sur $]-\infty,-1[$.
- 5. Résoudre les équations différentielles suivantes, en précisant soigneusement l'intervalle de résolution :
 - (a) $(\cos t) y' (\sin t) y + \cos t = 0$.
 - (b) $y' + (\operatorname{tg} t) y = \sin t$.
 - (c) $t^3y' + 4(1-t^2)y = 0$.
 - (d) $y' + (tg t) y = \cos t$.
 - (e) $(\operatorname{tg} t) y' + y \sin t = 0$.

2 Équations du second ordre.

1. Résoudre les équations différentielles suivantes :

(a)
$$y'' - 5y' + 6y = 0$$
.

(b)
$$y'' - 3y' = 0$$
.

(c)
$$y'' - 2y' + 2y = 0$$
.

2. Résoudre les équations différentielles suivantes :

(a)
$$y'' + 2y' - 8y = e^{3t}$$
.

(b)
$$y'' - 3y' - 18y = te^{4t}$$
.

(c)
$$y'' - 10y' + 41y = \sin t$$
.

(d)
$$y'' - y' = t + 1$$
.

(e)
$$y'' - 2y' + 5y = t \cos 2t$$
.

(f)
$$y'' - 6y' + 9y = 4e^{3t}$$
.

(g)
$$y'' - 2y' + 2y = te^t \sin t + 3$$
.

3. Résoudre les équations différentielles suivantes :

(a)
$$y'' - 3y' + 2y = \frac{e^{3t}}{1 + e^t}$$
, $y(0) = 2$, $y'(0) = -1$.

(b)
$$y'' + 4y' + 4y = \frac{e^{-2t}}{(t-1)(t+2)}$$
, $t \in]-2,1[, y(0) = 0, y'(0) = 0.$