Calcul et Mathématiques Épreuve du 14 janvier 2013

Documents, calculatrices et téléphones interdits. Durée 3h00.

Exercice 1. Soit $a \in \mathbb{R}$. Résoudre dans \mathbb{C} l'équation

$$z^2 - 2(1-i)z + a^2 - 2i = 0.$$

Pour quelles valeurs de a cette équation admet-elle au moins une solution réelle?

Exercice 2. Calculer une primitive des fonctions suivantes :

- a) $x \mapsto x^2 \ln(x)$, définie sur $]0, +\infty[$.
- b) $x \mapsto \sqrt{1-x^2}$, définie sur [-1,1], en effectuant le changement de variable $x = \sin(u)$.

Exercice 3. Résoudre sur \mathbb{R} l'équation différentielle

$$y''(t) + 4y'(t) + 4y(t) = te^{2t}.$$

Exercice 4.

a) Résoudre sur $]0,+\infty[$ l'équation différentielle

$$y'(t) + y(t)/2t = t^{3/2}e^t.$$

b) Trouver la solution valant 2 en t = 1.

Exercice 5.

- a) Résoudre sur \mathbb{C} l'équation $z^4 = -1$.
- b) En déduire la factorisation sur $\mathbb C$, puis sur $\mathbb R$ du polynôme $P(X)=X^4+1.$
- c) Décomposer en éléments simples sur \mathbb{R} la fraction rationnelle $R(X) = \frac{1}{X^4 + 1}$.

d) Déterminer une primitive sur \mathbb{R} de la fonction

$$f(x) = \frac{1}{x^4 + 1}.$$

e) En utilisant le point précédent, résoudre sur $\mathbb R$ l'équation différentielle

$$(t^{2}+1)y'(t) + 4ty(t) = \frac{1}{t^{6}+t^{4}+t^{2}+1}.$$

Exercice 6.

1. On considère le polynôme

$$Q(X) = X^2 - X - 2.$$

Soit $n \in \mathbb{N}^*$. On note R_n le reste de la division euclidienne de X^n par Q(X).

- (a) Déterminer $R_n(-1)$ et $R_n(2)$.
- (b) En déduire l'expression de R_n en fonction de n.
- 2. Soit la matrice

$$M = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

- (a) Montrer que la matrice Q(M) est nulle.
- (b) Des questions précédentes, déduire la valeur de M^n pour tout $n \in \mathbb{N}^*$.
- 3. On considère trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ satisfaisant les relations de récurrence suivantes :

$$\begin{cases} u_{n+1} &= v_n + w_n \\ v_{n+1} &= u_n + w_n \\ w_{n+1} &= u_n + v_n \end{cases}$$

On pose
$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$
.

- (a) Calculer MX_n .
- (b) En déduire l'expression de X_n en fonction de M, n et X_0 .
- (c) Utiliser les questions précédentes pour calculer u_n , v_n et w_n en fonction de n dans le cas où $u_0 = 2$, $v_0 = 1$ et $w_0 = -1$.