Université de Lorraine

Faculté des Sciences et Techniques

Licence de Mathématiques S4

Année 2012/2013

LCMA 4.21 : Géométrie dans l'espace et visualisation

Liste d'exercices n°1

Dans tous les exercices, on désigne par \mathcal{E} l'espace de dimension 3.

- 1. Soit $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère affine de \mathcal{E} . Soit A le point de coordonnées (1, 0, -1) dans ce repère.
 - (a) Justifier que $\mathcal{R}' = (A, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est un repère affine de \mathcal{E} .
 - (b) Soit M le point de coordonnées (x,y,z) dans le repère \mathcal{R} . Quelles sont ses coordonnées dans le repère \mathcal{R}' ?
- 2. Soit $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère affine de \mathcal{E} . Soient A, B, C les points de \mathcal{E} tels que $\overrightarrow{OA} = \overrightarrow{i}, \overrightarrow{OB} = \overrightarrow{j}, \overrightarrow{OC} = \overrightarrow{k}$.
 - (a) Montrer que $\mathcal{R}'=(A,\overrightarrow{AO},\overrightarrow{AB},\overrightarrow{AC})$ est un repère affine de \mathcal{E} .
 - (b) Soit M le point de coordonnées (x,y,z) dans le repère \mathcal{R} . Quelles sont ses coordonnées dans le repère \mathcal{R}' ?
- 3. Soit $\mathcal{R}=(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ un repère de \mathcal{E} . Soient A,B,C les points de coordonnées respectives

$$A = \begin{vmatrix} 0 \\ 1 \\ -1 \end{vmatrix}, \quad B = \begin{vmatrix} 3 \\ 2 \\ 1 \end{vmatrix}, \quad C = \begin{vmatrix} -1 \\ 1 \\ 1 \end{vmatrix}.$$

Déterminer une équation du plan passant par A, B et C.

4. Soit $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère de \mathcal{E} . Soit \mathcal{P} le plan défini par l'équation

$$(\mathcal{P}) 2x + 3y + z - 1 = 0.$$

- (a) Déterminer une paramétrisation de \mathcal{P} .
- (b) Déterminer un repère $(A, \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ dans lequel l'équation du plan \mathcal{P} s'écrit Z=0 (les coordonnées d'un point dans ce repère étant notées (X,Y,Z)).
- 5. Soit $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère de \mathcal{E} . Soit A le point de coordonnées (5, -1, 2) et B le point de coordonnées (1, 1, -1). Déterminer des équations de la droite \mathcal{D} passant par A et B. Trouver un repère dans lequel des équations de cette droite sont : X = 0, Y = 0.

6. Soit $\mathcal{R}=(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ un repère de \mathcal{E} . On considère la droite \mathcal{D} définie par le système d'équations

$$\begin{cases} 2x + y - z - 1 = 0 \\ x - y + 2z + 1 = 0 \end{cases}.$$

- (a) Paramétrer la droite \mathcal{D} .
- (b) Déterminer un repère $\mathcal{R}'=(A,\overrightarrow{I},\overrightarrow{J},\overrightarrow{K})$ dans lequel la droite \mathcal{D} a pour équation

$$\begin{cases} X = 0 \\ Y = 0 \end{cases},$$

les coordonnées d'un point dans ce repère étant notées (X, Y, Z).

7. Soit $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère de \mathcal{E} . On considère les deux droites \mathcal{D} et \mathcal{D}' définies respectivement par les équations

$$\mathcal{D} \qquad \begin{cases} 2x + y - z - 1 = 0 \\ x - y + 2z + 1 = 0 \end{cases} \qquad \mathcal{D}' \quad \begin{cases} y + z + 3 = 0 \\ 3x - 2y + 3z = 0 \end{cases}.$$

Déterminer si ces deux droites sont sécantes et éventuellement donner les coordonnées de leur intersection.

8. Soit $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère de \mathcal{E} . On considère le plan \mathcal{P} d'équation

$$(\mathcal{P}) \qquad 2x + 3y - z + 1 = 0 \,,$$

et $\mathcal D$ la droite définie par le système d'équations

$$\begin{cases} x+y+z = 0\\ 2x-y-z +2 = 0 \end{cases}$$

Montrer que la droite \mathcal{D} coupe le plan \mathcal{P} en un unique point M dont on déterminera les coordonnées.

9. On considère les deux droites \mathcal{D} et \mathcal{D}' de \mathbb{R}^3 définies respectivement par les équations

$$\mathcal{D} \qquad \begin{cases} x+y=1 \\ x-z=0 \end{cases} \qquad \mathcal{D}' \quad \begin{cases} x-y=1 \\ x+y-z=1 \end{cases}.$$

- (a) Déterminer des repères (A, \overrightarrow{i}) et $(A', \overrightarrow{i'})$ de ces 2 droites.
- (b) Déterminer un vecteur \overrightarrow{u} orthogonal à ces 2 droites.
- (c) Déterminer une équation du plan \mathcal{P} (resp. \mathcal{P}') contenant \mathcal{D} (resp. \mathcal{D}') et parallèle à \overrightarrow{u} .
- (d) Déterminer l'intersection H' (resp. H) du plan $\mathcal P$ (resp. $\mathcal P'$) avec la droite $\mathcal D'$ (resp. $\mathcal D$)
- (e) Montrer que la perpendiculaire commune à \mathcal{D} et \mathcal{D}' est la droite (HH'). Déterminer cette droite par un système d'équations et par un repère.
- (f) Quelle est la plus petite distance d'un point de \mathcal{D} et d'un point de \mathcal{D}' ?